Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 15(726): eadi9867, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091409

RESUMEN

The rebound-competent viral reservoir, composed of a virus that is able to persist during antiretroviral therapy (ART) and mediate reactivation of systemic viral replication and rebound viremia after ART interruption (ATI), remains the biggest obstacle to treating HIV infection. A better understanding of the cellular and tissue origins and the dynamics of viral populations that initiate rebound upon ATI could help develop therapeutic strategies for reducing the rebound-competent viral reservoir. In this study, barcoded simian immunodeficiency virus (SIV), SIVmac239M, was used to infect rhesus macaques to enable monitoring of viral barcode clonotypes contributing to virus detectable in plasma after ATI. Blood and tissues from secondary lymphoid organs (spleen, mesenteric lymph nodes, and inguinal lymph nodes) and from the colon, ileum, lung, liver, and brain were analyzed using viral barcode sequencing, intact proviral DNA assay, single-cell RNA sequencing, and combined CODEX and RNAscope in situ hybridization. Four of seven animals had viral barcodes detectable by deep sequencing of plasma at necropsy, although plasma viral RNA remained below 22 copies per milliliter. Among the tissues studied, mesenteric lymph nodes, inguinal lymph nodes, and spleen contained viral barcodes detected in plasma. CD4+ T cells were the main cell type harboring viral RNA after ATI. Furthermore, T cell zones in lymphoid tissues showed higher viral RNA abundance than B cell zones for most animals. These findings are consistent with lymphoid tissues contributing to the virus present in plasma early after ATI.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Virus de la Inmunodeficiencia de los Simios/genética , Macaca mulatta , Infecciones por VIH/tratamiento farmacológico , Antirretrovirales/uso terapéutico , Antirretrovirales/farmacología , Tejido Linfoide , Replicación Viral , ARN Viral , Carga Viral , Linfocitos T CD4-Positivos
2.
Appl Opt ; 62(25): 6705-6713, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706803

RESUMEN

A method of the three-hole optical observation is presented that can measure the chromatic dispersion angle with the advantage of overcoming the influence of out-of-focus images on the measurement results, especially those that are out-of-focus due to the ambient temperature change. This paper uses the refractive index model and the actual meteorological data to calculate the chromatic dispersion angles during the observation period for comparison and analysis to demonstrate the reliability of the optical observation. The optical observation results are generally consistent with the calculated results, but the local distribution is relatively discrete. Additionally, the optics method applies to the observation targets under arbitrary paths in the dynamic atmosphere, and the observed results can better reflect the real atmosphere condition of the chromatic dispersion angle, providing more accurate data for research in related fields.

3.
bioRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398418

RESUMEN

The rebound-competent viral reservoir (RCVR), comprised of virus that is able to persist during antiretroviral therapy (ART) and mediate reactivation of systemic viral replication and rebound viremia after antiretroviral therapy interruption (ATI), remains the biggest obstacle to the eradication of HIV infection. A better understanding of the cellular and tissue origins and the dynamics of viral populations that initiate rebound upon ATI could help develop targeted therapeutic strategies for reducing the RCVR. In this study, barcoded SIVmac239M was used to infect rhesus macaques to enable monitoring of viral barcode clonotypes contributing to virus detectable in plasma after ATI. Blood, lymphoid tissues (LTs, spleen, mesenteric and inguinal lymph nodes), and non-lymphoid tissues (NLTs, colon, ileum, lung, liver, and brain) were analyzed using viral barcode sequencing, intact proviral DNA assay, single-cell RNA sequencing, and combined CODEX/RNAscope/ in situ hybridization. Four of seven animals had viral barcodes detectable by deep sequencing of plasma at necropsy although plasma viral RNA remained < 22 copies/mL. Among the tissues studied, mesenteric and inguinal lymph nodes, and spleen contained viral barcodes detected in plasma, and trended to have higher cell-associated viral loads, higher intact provirus levels, and greater diversity of viral barcodes. CD4+ T cells were the main cell type harboring viral RNA (vRNA) after ATI. Further, T cell zones in LTs showed higher vRNA levels than B cell zones for most animals. These findings are consistent with LTs contributing to virus present in plasma early after ATI. One Sentence Summary: The reemerging of SIV clonotypes at early post-ATI are likely from the secondary lymphoid tissues.

4.
J Histochem Cytochem ; 70(8): 571-581, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35848523

RESUMEN

Highly multiplexed protein and RNA in situ detection on a single tissue section concurrently is highly desirable for both basic and applied biomedical research. CO-detection by inDEXing (CODEX) is a new and powerful platform to visualize up to 60 protein biomarkers in situ, and RNAscope in situ hybridization (RNAscope) is a novel RNA detection system with high sensitivity and unprecedent specificity at a single-cell level. Nevertheless, to our knowledge, the combination of CODEX and RNAscope remained unreported until this study. Here, we report a simple and reproducible combination of CODEX and RNAscope. We also determined the cross-reactivities of CODEX anti-human antibodies to rhesus macaques, a widely used animal model of human disease.


Asunto(s)
ARN , Animales , Biomarcadores , Hibridación in Situ , Macaca mulatta/genética , Macaca mulatta/metabolismo , ARN/genética
5.
Front Immunol ; 12: 672415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093573

RESUMEN

Humanized bone marrow-liver-thymic (hu-BLT) mice develop a functional immune system in periphery, nevertheless, have a limited reconstitution of human myeloid cells, especially microglia, in CNS. Further, whether bone marrow derived hematopoietic stem and progenitor cells (HSPCs) can enter the brain and differentiate into microglia in adults remains controversial. To close these gaps, in this study we unambiguously demonstrated that human microglia in CNS were extensively reconstituted in adult NOG mice with human interleukin-34 transgene (hIL34 Tg) from circulating CD34+ HSPCs, nonetheless not in hu-BLT NOG mice, providing strong evidence that human CD34+ HSPCs can enter adult brain and differentiate into microglia in CNS in the presence of hIL34. Further, the human microglia in the CNS of hu-BLT-hIL34 NOG mice robustly supported HIV-1 infection reenforcing the notion that microglia are the most important target cells of HIV-1 in CNS and demonstrating its great potential as an in vivo model for studying HIV-1 pathogenesis and evaluating curative therapeutics in both periphery and CNS compartments.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por VIH/virología , Trasplante de Células Madre Hematopoyéticas/métodos , Interleucinas , Microglía/virología , Animales , Encéfalo/virología , Diferenciación Celular , VIH-1 , Humanos , Interleucinas/genética , Ratones , Ratones Transgénicos , Microglía/citología , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...